Contact us today!

Open Monday through Friday

Schedule an Appointment

Menu

Aging and Geriatrics

Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate.

Iwamoto J, Takeda T, Sato Y, Uzawa M. Department of Sports Medicine, Keio University School of Medicine, Tokyo, Japan. [email protected]

BACKGROUND AND AIMS: Exercise may enhance the effect of alendronate on bone mineral density (BMD) and reduce chronic back pain in elderly women with osteoporosis. The aim of this study was to determine whether whole-body vibration exercise would enhance the effect of alendronate on lumbar BMD and bone turnover, and reduce chronic back pain in postmenopausal women with osteoporosis. METHODS: Fifty post-menopausal women with osteoporosis, 55-88 years of age, were randomly divided into two groups of 25 patients each: one taking alendronate (5 mg daily, ALN) and one taking alendronate plus exercise (ALN+EX). Exercise consisted of whole-body vibration using a Galileo machine (Novotec, Pforzheim, Germany), at an intensity of 20 Hz, frequency once a week, and duration of exercise 4 minutes. The study lasted 12 months. Lumbar BMD was measured by dual energy X-ray absorptiometry (Hologic QDR 1500W). Urinary cross-linked N-terminal telopeptides of type I collagen (NTX) and serum alkaline phosphatase (ALP) levels were measured by enzyme-linked immunosorbent assay and standard laboratory techniques, respectively. Chronic back pain was evaluated by face scale score at baseline and every 6 months. RESULTS: There were no significant differences in baseline characteristics, including age, body mass index, years since menopause, lumbar BMD, urinary NTX and serum ALP levels, or face scale score between the two groups. The increase in lumbar BMD and the reduction in urinary NTX and serum ALP levels were similar in the ALN and ALN+EX groups. However, the reduction in chronic back pain was greater in the ALN+EX group than in the ALN group. CONCLUSIONS: The results of this study suggest that whole-body vibration exercise using a Galileo machine appears to be useful in reducing chronic back pain, probably by relaxing the back muscles in post-menopausal osteoporotic women treated with alendronate.

Iwamoto J., Takeda T., Sato Y. & Uzawa M. (2005). Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate. Aging Clinical and Experimental Research. 17(2). 157-163.

Controlled whole body vibration to decrease fall risk and improve health-related quality of life of nursing home residents.

Bruyere O, Wuidart MA, Di Palma E, Gourlay M, Ethgen O, Richy F, Reginster JY.

WHO Collaborating Center for Public Health Aspects of Osteoarticular Disorders, Liège, Belgium. [email protected]

OBJECTIVE: To investigate the effects of whole body vibration in the elderly. DESIGN: Randomized controlled trial. SETTING: Nursing home. PARTICIPANTS: Forty-two elderly volunteers. INTERVENTIONS: Six-week vibration intervention plus physical therapy (PT) (n=22) or PT alone (n=20). MAIN OUTCOME MEASURES: We assessed gait and body balance using the Tinetti test (maximum scores of 12 for gait, 16 for body balance, 28 for global score), motor capacity using the Timed Up & Go (TUG) test, and health-related quality of life (HRQOL) using the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36). RESULTS: After 6 weeks, the vibration intervention group improved by a mean +/- standard deviation of 2.4+/-2.3 points on the gait score compared with no score change in the control group ( P <.001). The intervention group improved by 3.5+/-2.1 points on the body balance score compared with a decrease of 0.3+/-1.2 points in the control group ( P <.001). TUG test time decreased by 11.0+/-8.6 seconds in the treated group compared with an increase of 2.6+/-8.8 seconds in the control group ( P <.001). The intervention group had significantly greater improvements from baseline on 8 of 9 items on the SF-36 compared with the control group. CONCLUSIONS: Controlled whole body vibration can improve elements of fall risk and HRQOL in elderly patients.

Bruyere O., Wuidart M.A., Di Palma E., Gourlay M., Ethgen O., Richy F. & Reginster J.Y. (2005). Controlled whole body vibration to decrease fall risk and improve health-related quality of life of nursing home residents. Archives of Physical Medicine and Rehabilitation. 86(2). 303-307.

High-frequency whole-body vibration improves balancing ability in elderly women.
Cheung WH, Mok HW, Qin L, Sze PC, Lee KM, Leung KS. Department of Orthopaedics and Traumatology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.

OBJECTIVE: To investigate the efficacy of high-frequency whole-body vibration (WBV) on balancing ability in elderly women. DESIGN: Randomized controlled trial. Subjects were randomized to either the WBV intervention or the no-treatment control group. SETTING: Community-living elderly women. PARTICIPANTS: Sixty-nine elderly women aged 60 or above without habitual exercise. INTERVENTION: Side alternating WBV at 20Hz with 3 minutes a day and 3 days a week for 3 months in the WBV intervention group. Those in control group remained sedentary with normal daily life for the whole study period. MAIN OUTCOME MEASURES: Limits of stability in terms of reaction time, movement velocity, directional control, endpoint excursion, maximum excursion, and the functional reach test were performed at baseline and endpoint. RESULTS: Significant enhancement of stability was detected in movement velocity (P<.01), maximum point excursion (P<.01), in directional control (P<.05). CONCLUSIONS: WBV was effective in improving the balancing ability in elderly women. This also provides evidence to support our user-friendly WBV treatment protocol of 3 minutes a day for the elderly to maintain their balancing ability and reduce risks of fall.

Cheung W.H., Mok H.W., Qin L., Sze P.C., Lee K.M. & Leung K.S. (2007). High-frequency whole-body vibration improves balancing ability in elderly women. Archives of Physical Medicine and Rehabilitation. 88(7). 852-857.

A comparison of the physiologic effects of acute whole-body vibration exercise in young and older people. /Cochrane DJ, Sartor F, Winwood K, Stannard SR, Narici MV, Rittweger J. Sport Management & Coaching, Department of Management, Massey University, Palmerston North, NZ. [email protected]

OBJECTIVE: To examine the acute physiologic effects of acute whole-body vibration (WBV) exercise in young and older people. DESIGN: Every participant performed 9 conditions in a static squat position, consisting of no vibration and WBV at 30Hz and 3 loads corresponding to (1) no load (0% body mass), (2) load of 20% body mass, and (3) load of 40% body mass. A Jendrassik voluntary contraction was also performed with no vibration and WBV at 30Hz with no load and 20% body mass. SETTING: Laboratory facilities at a university in the United Kingdom. PARTICIPANTS: Healthy young people (n=12; 6 men, 6 women; mean age, 21.5y) and 12 healthy older people (6 men, 6 women; mean age, 69.2y) from the local community. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: The Physical Activity Questionnaire, anthropometric measures, counter-movement jump, and isometric maximal voluntary contraction with the Jendrassik maneuver were assessed in both groups. Oxygen uptake (Vo2), blood pressure, heart rate, and rating of perceived exertion (RPE) were recorded during WBV and load conditions as the outcome of the study. RESULTS: Both vibration and load were associated with an increase (P<.001) in Vo2 for older and young groups. WBV elicited the equivalent of a .35 metabolic equivalent (MET) increase in Vo2, with additional loads of 20% and 40% body mass increasing Vo2 by 0.8 and 1.2 METs, respectively. Additionally, there was an interaction effect of vibration and group in which the WBV-related Vo2 increase was less in the old compared with the young. Both vibration and load caused an increase in heart rate, blood pressure, and RPE (all P<.001); however, there were no significant group differences between young and older groups. The Jendrassik maneuver elicited an increase in Vo2 by 27.6% for the old and 33% for the young group (P<.001); however, there was no significant difference between groups. CONCLUSIONS: Vo2 significantly increased in both the older and young people with vibration and additional load and when the Jendrassik maneuver was superimposed with vibration and load. However, the elicited increase in Vo2 (1.2mL x kg(-1).min(-1)) from WBV may be an insufficient stimulus to improve cardiovascular fitness.

Cochrane D.J., Sartor F., Winwood K., Stannard S.R., Narici M.V. & Rittweger J. (2008). A comparison of the physiologic effects of acute whole-body vibration exercise in young and older people. Archives of Physical Medicine and Rehabilitation. 89(5). 815-821.

Whole body vibration versus conventional physiotherapy to improve balance and gait in Parkinson's disease.
Ebersbach G, Edler D, Kaufhold O, Wissel J. Movement Disorders Clinic, Beelitz-Heilstätten, Germany. [email protected]

OBJECTIVE: To compare the effects of whole body vibration (WBV) and conventional physiotherapy (PT) on levodopa-resistant disturbances of balance and gait in idiopathic Parkinson's disease (PD). DESIGN: Randomized controlled rater-blinded trial comparing 2 active interventions, final follow-up assessment 4 weeks after termination of active intervention. SETTING: Specialized referral center, hospitalized care. PARTICIPANTS: Patients with PD and dopa-resistant imbalance on stable dopamine replacement medication (N=27) were randomized (intent-to-treat population) to receive WBV (n=13) or conventional PT (controls, n=14). Twenty-one patients (per protocol population) completed follow-up (14 men, 7 women; mean age, 73.8 y; age range, 62-84 y; mean disease duration, 7.2 y; mean dopa-equivalent dose, 768 mg/d). INTERVENTION: Subjects were randomized to receive 30 sessions (two 15-min sessions a day, 5 days a week) of either WBV on an oscillating platform or conventional balance training including exercises on a tilt board. Twenty-one subjects (10 with WBV, 11 controls) were available for follow-up 4 weeks after treatment termination. MAIN OUTCOME MEASURES: The primary measure was Tinetti Balance Scale score. Secondary clinical ratings included stand-walk-sit test, walking velocity, Unified Parkinson's Disease Rating Scale (section III motor examination) score, performance in the pull test, and dynamic posturography. RESULTS: The Tinetti score improved from 9.3 to 12.8 points in the WBV group and from 8.3 to 11.7 in the controls. All secondary measures, except posturography, likewise improved at follow-up compared with baseline in both groups. Quantitative dynamic posturography only improved in patients with WBV (1937-1467 mm) whereas there was no significant change in controls (1832-2030 mm). CONCLUSIONS: Equilibrium and gait improved in patients with PD receiving conventional WBV or conventional PT in the setting of a comprehensive rehabilitation program. There was no conclusive evidence for superior efficacy of WBV compared with conventional balance training.

Ebersbach G., Edler D., Kaufhold O. & Wissel J. (2008). Whole body vibration versus conventional physiotherapy to improve balance and gait in parkinson's disease. Archives of Physical Medicine and Rehabilitation. 89(3). 399-403.

The feasibility of Whole Body Vibration in institutionalised elderly persons and its influence on muscle performance, balance and mobility: a randomised controlled trial.

Bautmans I, Van Hees E, Lemper JC, Mets T. Gerontology, Free University of Brussels (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium. [email protected]

BACKGROUND: Fatigue or lack of interest can reduce the feasibility of intensive physical exercise in nursing home residents. Low-volume exercise interventions with similar training effects might be an alternative. The aim of this randomised controlled trial was to investigate the feasibility of Whole Body Vibration (WBV) in institutionalised elderly, and its impact on functional capacity and muscle performance. METHODS: Twenty-four nursing home residents (15 female, 9 male; mean age 77.5 +/- 11.0 years) were randomised (stratification for age, gender and ADL-category) to 6 weeks static WBV exercise (WBV+, N = 13) or control (only static exercise; N = 11). Outcome measures were exercise compliance, timed up-and-go, Tinetti-test, back scratch, chair sit-and-reach, handgrip strength and linear isokinetic leg extension. RESULTS: At baseline, WBV+ and control groups were similar for all outcome variables. Twenty-one participants completed the program and attended respectively 96% and 86% of the exercise sessions for the WBV+ and control groups. Training-induced changes in timed up-and-go and Tinetti-test were better for WBV+ compared to control (p = 0.029 for timed up-and-go, p = 0.001 and p = 0.002 for Tinetti body balance and total score respectively). In an alternative analysis (Worst Rank Score & Last Observation Carried Forward) the differences in change remained significant on the Tinetti body balance and total score. No other significant differences in change between both groups were observed. CONCLUSION: In nursing home residents with limited functional dependency, six weeks static WBV exercise is feasible, and is beneficial for balance and mobility. The supplementary benefit of WBV on muscle performance compared to classic exercise remains to be explored further.

Bautmans I.,Van Hees E., Lemper J.C. & Mets T. (2005). The feasibility of whole body vibration in institutionalised elderly persons and its influence on muscle performance, balance and mobility: a randomised controlled trial. BMC Geriatrics. 22;5:17.

Hormonal responses to a single session of whole body vibration exercise in elderly individuals.
Cardinale M, Soiza RL, Leiper JB, Gibson A, Primrose WR. Olympic Medical Institute, United Kingdom.

OBJECTIVE: Whole body vibration has been recently suggested as an alternative form of exercise. The aim of the study was to analyse the acute effects of a single session of whole body vibration exercise on anabolic hormones in aged individuals. DESIGN: A Randomised cross-over trial design was used. SETTINGS: Geriatrics department, Hospital. PARTICIPANTS: Twenty subjects (9 males and 11 females; median age 70 years (range 66 to 85 years) volunteered in the experiment. INTERVENTIONS: isometric squat on a platform with vibration (V) or no vibration (C) conditions. MAIN OUTCOME MEASUREMENTS: Plasma Cortisol, Testosterone, Growth Hormone, and IGF-1 were measured before, after, 1h and 2h after the interventions. REPORTS: A significant difference between treatments (P<.001) and a time by treatment interaction (P<.05) was found in IGF-1 levels. Cortisol levels were shown not to be significantly different between treatments (P=0.43) but a difference over time (P<.001) and a time x treatment interaction (P<.05) were identified. No significant differences were identified in GH and Testosterone levels. CONCLUSIONS: the results of our study suggest that 5 minutes of WBV exercise characterised by static squat with a frequency of 30Hz can be performed by elderly individuals without apparent signs of stress and/or fatigue. Furthermore, the results of the study showed that WBV produced an acute increase in the circulating levels IGF-1 and cortisol greater than that observed following the same exercise protocol conducted without vibration.

Cardinale M., Soiza R.L., leiper J.B., Gibson A. & Primrose W.R. (2008). Hormonal responses to a single session of whole body vibration exercise in elderly individuals. British Journal of Sports Medicine. [Epub ahead of print].

Whole body vibration exercise: training and benefits.

Dolny DG, Reyes GF. Department HPERD, University of Idaho, College of Education, Human Performance Laboratory, Moscow, ID 83844, USA. [email protected]

In recent years, it has been suggested that exercise using whole body vibration (WBV) platforms may increase muscle activity and subsequently enhance muscle performance in both acute and chronic conditions. WBV platforms produce frequencies ranging from 15-60 Hz and vertical displacements from ~1-11 mm, resulting in accelerations of ~2.2-5.1 g. Acute exposure to WBV has produced mixed results in terms of improving jump, sprint, and measures of muscle performance. With WBV training, younger fit subjects may not experience gains unless some type of external load is added to WBV exercise. However, sedentary and elderly individuals have demonstrated significant gains in most measures of muscle performance, similar with comparable traditional resistance exercise training programs. WBV training also has demonstrated gains in flexibility in younger athletic populations and gains or maintenance in bone mineral density in postmenopausal women. These promising results await further research to establish preferred WBV training parameters.

DolnyD.G. & Reyes G.F. (2008). Whole body vibration exercise: training and benefits. Current Sports Medicine Reports. 7(3), 152-157.

Whole body vibration exercise: training and benefits.

Dolny DG, Reyes GF. Department HPERD, University of Idaho, College of Education, Human Performance Laboratory, Moscow, ID 83844, USA. [email protected]

In recent years, it has been suggested that exercise using whole body vibration (WBV) platforms may increase muscle activity and subsequently enhance muscle performance in both acute and chronic conditions. WBV platforms produce frequencies ranging from 15-60 Hz and vertical displacements from ~1-11 mm, resulting in accelerations of ~2.2-5.1 g. Acute exposure to WBV has produced mixed results in terms of improving jump, sprint, and measures of muscle performance. With WBV training, younger fit subjects may not experience gains unless some type of external load is added to WBV exercise. However, sedentary and elderly individuals have demonstrated significant gains in most measures of muscle performance, similar with comparable traditional resistance exercise training programs. WBV training also has demonstrated gains in flexibility in younger athletic populations and gains or maintenance in bone mineral density in postmenopausal women. These promising results await further research to establish preferred WBV training parameters.

DolnyD.G. & Reyes G.F. (2008). Whole body vibration exercise: training and benefits. Current Sports Medicine Reports. 7(3), 152-157.

Effects of whole body vibration training on postural control in older individuals: a 1 year randomized controlled trial.

Bogaerts A, Verschueren S, Delecluse C, Claessens AL, Boonen S. Division of Musculoskeletal Rehabilitation, Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, Katholieke Universiteit Leuven, Tervuursevest 101, 3001 Leuven, Belgium.

This randomized controlled trial investigated the effects of a 12 month whole body vibration training program on postural control in healthy older adults. Two hundred and twenty people were randomly assigned to a whole body vibration group (n=94), a fitness group (n=60) or a control group (n=66). The whole body vibration and fitness groups trained three times a week for 1 year. The vibration group performed exercises on a vibration platform and the fitness group performed cardiovascular, strength, balance and stretching exercises. Balance was measured using dynamic computerized posturography at baseline and after 6 and 12 months. Whole body vibration training was associated with reduced falls frequency on a moving platform when vision was disturbed and improvements in the response to toes down rotations at the ankle induced by the moving platform. The fitness group showed reduced falls frequency on the moving surface when vision was disturbed. Thus, whole body vibration training may improve some aspects of postural control in community dwelling older individuals.

Bogaerts A, Verschueren S., Delecluse C., Claessens A.L. & Boonen S. (2007). Effects of whole body vibration training on postural control in older individuals: a 1 year randomized controlled trial. Gait & Posture. 26(2). 309-316.

Effects of vibration exercise on muscle performance and mobility in an older population.

Rees S, Murphy A, Watsford M. School of Leisure, Sport and Tourism, University of Technology, Sydney, Australia.

This study was designed to investigate the effects of vibration on muscle performance and mobility in a healthy, untrained, older population. Forty-three participants (23 men, 20 women, 66-85 y old) performed tests of sit-to-stand (STS), 5- and 10-m fast walk, timed up-and-go test, stair mobility, and strength. Participants were randomly assigned to a vibration group, an exercise-withoutvibration group, or a control group. Training consisted of 3 sessions/wk for 2 mo. After training, the vibration and exercise groups showed improved STS (12.4%, 10.2%), 5-m fast walk (3.0%, 3.7%), and knee-extension strength (8.1%, 7.2%) compared with the control (p < 0.05). Even though vibration training improved lower limb strength, it did not appear to have a facilitatory effect on functional-performance tasks compared with the exercise-without-vibration group. Comparable mobility and performance changes between the experimental groups suggest that improvements are linked with greater knee-extension strength and largely attributed to the unloaded squats performed by both exercise groups.

Rees S., Murphy A. & Watsford M. (2007). Effects of vibration exercise on muscle performance and mobility in an older population. Journal of Aging and Physical Activity. 15(4). 367-381.

Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study.

Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S. Laboratory of Motor Control, Department of Kinesiology, Faculteit Lichamelijke Opvoeding en Kinesitherapie, Katholieke Universiteit, Leuven, Belgium.

High-frequency mechanical strain seems to stimulate bone strength in animals. In this randomized controlled trial, hip BMD was measured in postmenopausal women after a 24-week whole body vibration (WBV) training program. Vibration training significantly increased BMD of the hip. These findings suggest that WBV training might be useful in the prevention of osteoporosis. INTRODUCTION: High-frequency mechanical strain has been shown to stimulate bone strength in different animal models. However, the effects of vibration exercise on the human skeleton have rarely been studied. Particularly in postmenopausal women-who are most at risk of developing osteoporosis-randomized controlled data on the safety and efficacy of vibration loading are lacking. The aim of this randomized controlled trial was to assess the musculoskeletal effects of high-frequency loading by means of whole body vibration (WBV) in postmenopausal women. MATERIALS AND METHODS: Seventy volunteers (age, 58-74 years) were randomly assigned to a whole body vibration training group (WBV, n = 25), a resistance training group (RES, n = 22), or a control group (CON, n = 23). The WBV group and the RES group trained three times weekly for 24 weeks. The WBV group performed static and dynamic knee-extensor exercises on a vibration platform (35-40 Hz, 2.28-5.09g), which mechanically loaded the bone and evoked reflexive muscle contractions. The RES group trained knee extensors by dynamic leg press and leg extension exercises, increasing from low (20 RM) to high (8 RM) resistance. The CON group did not participate in any training. Hip bone density was measured using DXA at baseline and after the 6-month intervention. Isometric and dynamic strength were measured by means of a motor-driven dynamometer. Data were analyzed by means of repeated measures ANOVA. RESULTS: No vibration-related side effects were observed. Vibration training improved isometric and dynamic muscle strength (+15% and + 16%, respectively; p < 0.01) and also significantly increased BMD of the hip (+0.93%, p < 0.05). No changes in hip BMD were observed in women participating in resistance training or age-matched controls (-0.60% and -0.62%, respectively; not significant). Serum markers of bone turnover did not change in any of the groups. CONCLUSION: These findings suggest that WBV training may be a feasible and effective way to modify well-recognized risk factors for falls and fractures in older women and support the need for further human studies.

Verschueren S.M., Roelants M., Delecluse C., Swinnen S., Vanderschueren D. & Boonen S. (2004). Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. Journal of Bone and Mineral Research. 19(3). 352-359.

Balance training and exercise in geriatric patients.

Runge M, Rehfeld G, Resnicek E. Aerpah-Klinik Esslingen, Germany. [email protected]

Objective measures of gait and balance which meet the criteria of reliability and validity are required as a basis for exercise regimens. We established reference values of clinically relevant locomotor and balance performances for geriatric patients. We are using these data for evaluating the effects of different therapeutic approaches to locomotor and balance disorders. Reference values for chair rising. We administered a battery of five tests concerning neuromuscular function, locomotion and balance to a sample of 212 participants without apparent locomotor deficits (139 women, 73 men, mean age 70,5 years, SD 6,78 , median 70 years, range 60 to 90 years, recruited by public announcements). The test battery comprised the 'chair rising test' for measuring lower extremity neuromuscular function (five repetitions of rising from a chair as quickly as possible with arms crossed over the chest). The test has been proven reliable, valid, sensible and predictive for falls and future locomotor status and ADL-status. Chair rising [sec/5x], Range: 5.4-19.4, Mean: 9.1 (women:9.2, men:9.0), SD: 1.97, Median: 8.9. Training of balance and muscle power with Galileo 2000 - preliminary results. Galileo is a device for whole body vibration/oscillatory muscle stimulation. The subject stands with bended knees and hips on a rocking platform with a sagittal axle, which thrusts alternatively the right and left leg 7-14 mm upwards with a frequency of 27 Hz, thereby lengthening the extensor muscles of the lower extremities. The reflexive reaction of the neuromuscular system is a chain of rapid muscle contractions. We conducted a randomized controlled trial, n=34 (age: mean 67y, range 61-85, 11 female), cross-over design, intervention group 2 months training program three times a week (each session 3x2 minutes), performance tests of all participants every two weeks). The first 19 subjects have finished the intervention period. They reached mean performance gains in chair rising of 18%, strikingly different to the constant values of the controls! We interpret the findings as improvements in muscle power by the oscillative muscle stimulation.

Runge M., Rehfeld G. & Resnicek E. (2000). Balance training and exercise in geriatric patients. Journal of Musculoskeletal and Neuronal Interactions. 1(1). 61-65.

Effects of whole body vibration on postural steadiness in an older population.

Rees SS, Murphy AJ, Watsford ML.

Human Performance Laboratory, School of Leisure, Sport and Tourism, University of Technology, Sydney, Australia.

The aim of this study was to investigate the effects of vibration exercise on postural steadiness performance in a healthy, older population. Forty-three healthy, older participants (23 men and 20 women, aged 73.5+/-4.5yr) were randomly assigned to either a vibration group (VIB), an exercise without vibration group (EX) or a control group (CONT). The VIB and EX groups undertook static and dynamic bodyweight exercises three times per week for eight weeks. Static balance was assessed using a one-legged postural steadiness (OLPS) test. This test was performed prior to and immediately after the training period. OLPS improved significantly for the VIB intervention after eight weeks training (p<0.05) compared to the EX and CONT groups. The improvements in OLPS were significantly affected by the baseline values, with the largest changes evident for VIB participants with a poorer initial score (p<0.01). Vibration exercise can contribute to improved static one-legged balance in a healthy, older population. As improvements in OLPS were related to baseline values, vibration exercise as an intervention would appear to serve the most benefit for those that exhibit diminished postural control.

Rees S.S., Murphy A.J. & Watsford M.L. (2008). Effects of whole body vibration on postural steadiness in an older population. Journal of Science and Medicine in Sport. [Epub ahead of print].

Whole-body-vibration training increases knee-extension strength and speed of movement in older women.

Roelants M, Delecluse C, Verschueren SM. Exercise Physiology and Biomechanics Laboratory, Faculty of Physical Education and Physiotherapy, Department of Kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium.

OBJECTIVES: To investigate the effects of 24 weeks of whole-body-vibration (WBV) training on knee-extension strength and speed of movement and on counter-movement jump performance in older women. DESIGN: A randomized, controlled trial. SETTING: Exercise Physiology and Biomechanics Laboratory, Leuven, Belgium. PARTICIPANTS: Eighty-nine postmenopausal women, off hormone replacement therapy, aged 58 to 74, were randomly assigned to a WBV group (n=30), a resistance-training group (RES, n=30), or a control group (n=29). INTERVENTION: The WBV group and the RES group trained three times a week for 24 weeks. The WBV group performed unloaded static and dynamic knee-extensor exercises on a vibration platform, which provokes reflexive muscle activity. The RES group trained knee-extensors by performing dynamic leg-press and leg-extension exercises increasing from low (20 repetitions maximum (RM)) to high (8RM) resistance. The control group did not participate in any training. MEASUREMENTS: Pre-, mid- (12 weeks), and post- (24 weeks) isometric strength and dynamic strength of knee extensors were measured using a motor-driven dynamometer. Speed of movement of knee extension was assessed using an external resistance equivalent to 1%, 20%, 40%, and 60% of isometric maximum. Counter-movement jump performance was determined using a contact mat. RESULTS: Isometric and dynamic knee extensor strength increased significantly (P<.001) in the WBV group (mean+/-standard error 15.0+/-2.1% and 16.1+/-3.1%, respectively) and the RES group (18.4+/-2.8% and 13.9+/-2.7%, respectively) after 24 weeks of training, with the training effects not significantly different between the groups (P=.558). Speed of movement of knee extension significantly increased at low resistance (1% or 20% of isometric maximum) in the WBV group only (7.4+/-1.8% and 6.3+/-2.0%, respectively) after 24 weeks of training, with no significant differences in training effect between the WBV and the RES groups (P=.391; P=.142). Counter-movement jump height enhanced significantly (P<.001) in the WBV group (19.4+/-2.8%) and the RES group (12.9+/-2.9%) after 24 weeks of training. Most of the gain in knee-extension strength and speed of movement and in counter-movement jump performance had been realized after 12 weeks of training. CONCLUSION: WBV is a suitable training method and is as efficient as conventional RES training to improve knee-extension strength and speed of movement and counter-movement jump performance in older women. As previously shown in young women, it is suggested that the strength gain in older women is mainly due to the vibration stimulus and not only to the unloaded exercises performed on the WBV platform.

Roelants M., Delecluse C. & Verschueren S.M. (2004). Whole-body-vibration training increases knee-extension strength and speed of movement in older women. Journal of the American Geriatrics Society. 52(6). 901-908.

Effects of whole-body vibration exercise on lower-extremity muscle strength and power in an older population: a randomized clinical trial.

Rees SS, Murphy AJ, Watsford ML.

School of Leisure, Sport and Tourism, University of Technology, Sydney (Kuring-gai Campus), PO Box 222, Lindfield, NSW, 2070, Australia. [email protected]

BACKGROUND AND PURPOSE: Vibration training is a relatively new exercise intervention. This study investigated the effects of vibration exercise on strength (force-producing capacity) and power in older adults who are healthy. PARTICIPANTS AND METHODS: Thirty participants (mean age=73.7 years, SD=4.6) were randomly assigned to a vibration exercise training (VIB) group or an exercise without vibration training (EX) group. The interventions consisted of 3 sessions per week for 8 weeks. Outcome measures included isokinetic flexor and extensor strength and power of the hip, knee, and ankle. RESULTS: The VIB group significantly improved ankle plantar flexor strength and power compared with the EX group. However, there were no significant differences between the VIB and EX groups for knee flexor or extensor strength. DISCUSSION AND CONCLUSION: Vibration training contributed to an increase in plantar flexor strength and power. However, the strength gains for the knee and hip flexors and extensors for the VIB group and the EX group were comparable. Future vibration protocols should explore different body positions to target muscles higher up on the leg.

Rees S.S., Murphy A.J. & Watsford M.L. (2008). Effects of whole body vibration exercise on lower-extremity muscle strength and power in an older population: a randomized clinical trial. Physical Therapy. 88(4). 462-470.

Impact of whole-body vibration training versus fitness training on muscle strength and muscle mass in older men: a 1-year randomized controlled trial.

Bogaerts A, Delecluse C, Claessens AL, Coudyzer W, Boonen S, Verschueren SM.

Division of Musculoskeletal Rehabilitation, Katholieke Universiteit Leuven, Tervuursevest 101, Leuven, Belgium.

BACKGROUND: This randomized controlled study investigated the effects of 1-year whole-body vibration (WBV) training on isometric and explosive muscle strength and muscle mass in community-dwelling men older than 60 years. METHODS: Muscle characteristics of the WBV group (n = 31, 67.3 +/- 0.7 years) were compared with those of a fitness (FIT) group (n = 30, 67.4 +/- 0.8 years) and a control (CON) group (n = 36, 68.6 +/- 0.9 years). Isometric strength of the knee extensors was measured using an isokinetic dynamometer, explosive muscle strength was assessed using a counter movement jump, and muscle mass of the upper leg was determined by computed tomography. RESULTS: Isometric muscle strength, explosive muscle strength, and muscle mass increased significantly in the WBV group (9.8%, 10.9%, and 3.4%, respectively) and in the FIT group (13.1%, 9.8%, and 3.8%, respectively) with the training effects not significantly different between the groups. No significant changes in any parameter were found in the CON group. CONCLUSION: WBV training is as efficient as a fitness program to increase isometric and explosive knee extension strength and muscle mass of the upper leg in community-dwelling older men. These findings suggest that WBV training has potential to prevent or reverse the age-related loss in skeletal muscle mass, referred to as sarcopenia.

Bogaerts A., Delecluse C., Claessens A.L., Coudyzer W., Boonen S. & Verschueren S.M. (2007). Impact of whole-body vibration training versus fitness training on muscle strength and muscle mass in older men: a 1-year randomized controlled trial. The Journals of Gerontology. 62(6). 630-650.

Effect of whole-body vibration exercise and muscle strengthening, balance, and walking exercises on walking ability in the elderly.

Kawanabe K, Kawashima A, Sashimoto I, Takeda T, Sato Y, Iwamoto J.

Kawashima Orthopaedic Clinic, Chiba, Japan.

The present study was conducted to determine the beneficial effect of whole-body vibration (WBV) exercise in addition to muscle strengthening, balance, and walking exercises on the walking ability in the elderly. Sixty-seven elderly participants were divided into two groups; the WBV exercise plus routine exercises group (n=40) and the routine exercises alone group (n=27). WBV exercise was performed on a Galileo machine (Novotec, Pforzheim, Germany) at an intensity of 12-20 Hz, for a duration of 4 minutes, once every week. All the participants in both the groups were similarly instructed to undergo routine exercises such as balance and muscle strengthening training, and take walking exercise twice a week. The period of this study was 2 months to evaluate the acute effects of WBV exercise. The mean age of the participants was 72.0 years (range, 59-86 years). At baseline, there were significant negative correlations between age and the walking speed, step length, and maximum standing time on one leg. After the 2-month exercise program, the walking speed, step length, and the maximum standing time on one leg were significantly improved in the WBV exercise plus routine exercises group, while no significant changes in these parameters were observed in the routine exercises alone group. Thus, the present study showed the beneficial effect of WBV exercise in addition to muscle strengthening, balance, and walking exercises in improving the walking ability in the elderly. WBV exercise was safe and well tolerated in the elderly.

Kawanabe K., Kawashima A., Sashimoto I., Takeda T., Sato Y. & Iwamoto J. (2007). Effect of whole-body vibration exercise and muscle strengthening, balance, and walking exercises on walking ability in the elderly. The Keio Journal of Medicine. 56(1). 28-33.

High-frequency whole-body vibration improves balancing ability in elderly women.

Cheung WH, Mok HW, Qin L, Sze PC, Lee KM, Leung KS.

Department of Orthopaedics and Traumatology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.

OBJECTIVE: To investigate the efficacy of high-frequency whole-body vibration (WBV) on balancing ability in elderly women. DESIGN: Randomized controlled trial. Subjects were randomized to either the WBV intervention or the no-treatment control group. SETTING: Community-living elderly women. PARTICIPANTS: Sixty-nine elderly women aged 60 or above without habitual exercise. INTERVENTION: Side alternating WBV at 20Hz with 3 minutes a day and 3 days a week for 3 months in the WBV intervention group. Those in control group remained sedentary with normal daily life for the whole study period. MAIN OUTCOME MEASURES: Limits of stability in terms of reaction time, movement velocity, directional control, endpoint excursion, maximum excursion, and the functional reach test were performed at baseline and endpoint. RESULTS: Significant enhancement of stability was detected in movement velocity (P<.01), maximum point excursion (P<.01), in directional control (P<.05). CONCLUSIONS: WBV was effective in improving the balancing ability in elderly women. This also provides evidence to support our user-friendly WBV treatment protocol of 3 minutes a day for the elderly to maintain their balancing ability and reduce risks of fall.

Cheung W.H., Mok H.W., Qin L., Sze P.C., Lee K.M. & Leung K.S. (2007). High-frequency whole-body vibration improves balancing ability in elderly women. Archives of Physical Medicine and Rehabilitation. 88(7). 852-857.

A comparative study of whole body vibration training and conventional training on knee proprioception and postural stability after anterior cruciate ligament reconstruction.

Moezy A, Olavaei G, Hadian M, Razi M, Faghihzadeh S.

School of Rehabilitation, Medical Sciences/Tehran University, Tehran, Iran.

OBJECTIVE: To compare the effect of a whole body vibration training (WBVT) programme with a conventional training (CT) programme on knee proprioception and postural stability after anterior cruciate ligament (ACL) reconstruction. METHODS: Twenty athletes with unilateral ACL reconstruction were randomly assigned to the WBVT or CT group; all participants received 12 sessions of WBVT or conventional training. Absolute error in joint repositioning for two target angles (30 degrees and 60 degrees ) was measured with the Biodex dynamometer; bilateral dynamic postural stability (anteroposterior, mediolateral and overall stability indices) was measured with the Biodex Stability System pre-intervention and post-intervention. RESULTS: The improvement in postural stability in the WBVT group was significantly greater than that in the CT group (p< or =0.05). The p values of the changing scores of open overall, open anteroposterior, open mediolateral, closed overall, closed anteroposterior and closed mediolateral stability indices were 0.002, 0.010, 0.0001, 0.001, 0.0001 and 0.046, respectively. In addition, there were significant differences in all averages of absolute angular error at 60 degrees and 30 degrees between the WBVT and CT groups in both knees (p = 0.001 in healthy knees and p = 0.001 and p = 0.0001 in reconstructed knees), apart from the healthy knees at the 30 degrees target position, which was not significant (p = 0.131). CONCLUSIONS: Whole body vibration training improved proprioception and balance in athletes with reconstructed ACL.

Moezy A., Olavaei G., Hadian M., Razi M. & Faghihzadeh S. (2008). A comparative study of whole body vibration training and conventional training on knee proprioception and postural stability after anterior cruciate ligament reconstruction. British Journal of Sports Medicine. 42(5). 373-378.

The feasibility of Whole Body Vibration in institutionalised elderly persons and its influence on muscle performance, balance and mobility: a randomised controlled trial.

Bautmans I, Van Hees E, Lemper JC, Mets T.

Gerontology, Free University of Brussels (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium. [email protected]

BACKGROUND: Fatigue or lack of interest can reduce the feasibility of intensive physical exercise in nursing home residents. Low-volume exercise interventions with similar training effects might be an alternative. The aim of this randomised controlled trial was to investigate the feasibility of Whole Body Vibration (WBV) in institutionalised elderly, and its impact on functional capacity and muscle performance. METHODS: Twenty-four nursing home residents (15 female, 9 male; mean age 77.5 +/- 11.0 years) were randomised (stratification for age, gender and ADL-category) to 6 weeks static WBV exercise (WBV+, N = 13) or control (only static exercise; N = 11). Outcome measures were exercise compliance, timed up-and-go, Tinetti-test, back scratch, chair sit-and-reach, handgrip strength and linear isokinetic leg extension. RESULTS: At baseline, WBV+ and control groups were similar for all outcome variables. Twenty-one participants completed the program and attended respectively 96% and 86% of the exercise sessions for the WBV+ and control groups. Training-induced changes in timed up-and-go and Tinetti-test were better for WBV+ compared to control (p = 0.029 for timed up-and-go, p = 0.001 and p = 0.002 for Tinetti body balance and total score respectively). In an alternative analysis (Worst Rank Score & Last Observation Carried Forward) the differences in change remained significant on the Tinetti body balance and total score. No other significant differences in change between both groups were observed. CONCLUSION: In nursing home residents with limited functional dependency, six weeks static WBV exercise is feasible, and is beneficial for balance and mobility. The supplementary benefit of WBV on muscle performance compared to classic exercise remains to be explored further.

Bautmans I.,Van Hees E., Lemper J.C. & Mets T. (2005). The feasibility of whole body vibration in institutionalised elderly persons and its influence on muscle performance, balance and mobility: a randomised controlled trial. BMC Geriatrics. 22;5:17.

Effect of 4-min vertical whole body vibration on muscle performance and body balance: a randomized cross-over study.

Torvinen S, Sievanen H, Jarvinen TA, Pasanen M, Kontulainen S, Kannus P.

Bone Research Group, UKK Institute, Tampere, Finland. [email protected]

The purpose of this randomized cross-over study was to investigate the effects of a 4-min long, 2-mm vertically-vibrating vibration-exercise on muscle performance and body balance in healthy subjects. Sixteen volunteers (eight men and women aged 18-35 years) underwent both the 4-min vibration- and sham-interventions in a randomized order on different days. Performance- and balance-tests (stability platform, grip strength, extension strength of lower extremities, tandem-walk, vertical jump and shuttle-run) were done 10 minutes before (baseline) and 2 and 60 minutes after the intervention. In addition, the effect of vibration on the surface electromyography (EMG) of soleus, vastus lateralis, gluteus medius, and paravertebralis muscles was investigated during the vibration. The 4-min vibration-loading did not induce any statistically significant change in the performance- or balance-tests at the 2- or 60-min tests. Interestingly, however, the mean power frequency of the EMG in the vastus lateralis and gluteus medius muscles decreased during the vibration-intervention, indicating muscle fatigue, particularly in the hip region. It was concluded that a 4-min long, 2-mm vertically-vibrating vibration-stimulus did not induce changes in the performance and balance tests. Future studies should focus on evaluating the effects of different kinds of vibration-regimens, as well as the long-term effects of vibration-training, on body balance and muscle performance, and, as a broader objective, on bone.

Torvinen S., Sievanen H., Jarvinen T.A., Pasanen M., Kontulainen S. & Kannus P. (2002). Effect of 4-min vertical whole body vibration on muscle performance and body balance: a randomized cross-over study. International Journal of Sports Medicine. 23(5). 374-379.

Effects of whole body vibration training on postural control in older individuals: a 1 year randomized controlled trial.

Bogaerts A, Verschueren S, Delecluse C, Claessens AL, Boonen S.

Division of Musculoskeletal Rehabilitation, Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, Katholieke Universiteit Leuven, Tervuursevest 101, 3001 Leuven, Belgium.

This randomized controlled trial investigated the effects of a 12 month whole body vibration training program on postural control in healthy older adults. Two hundred and twenty people were randomly assigned to a whole body vibration group (n=94), a fitness group (n=60) or a control group (n=66). The whole body vibration and fitness groups trained three times a week for 1 year. The vibration group performed exercises on a vibration platform and the fitness group performed cardiovascular, strength, balance and stretching exercises. Balance was measured using dynamic computerized posturography at baseline and after 6 and 12 months. Whole body vibration training was associated with reduced falls frequency on a moving platform when vision was disturbed and improvements in the response to toes down rotations at the ankle induced by the moving platform. The fitness group showed reduced falls frequency on the moving surface when vision was disturbed. Thus, whole body vibration training may improve some aspects of postural control in community dwelling older individuals.

Bogaerts A, Verschueren S., Delecluse C., Claessens A.L. & Boonen S. (2007). Effects of whole body vibration training on postural control in older individuals: a 1 year randomized controlled trial. Gait & Posture. 26(2). 309-316.

Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study.

Torvinen S, Kannnus P, Sievanen H, Jarvinen TA, Pasanen TA, Kontulainen S, Nenonen A, Jarvinen TL, Paakkala T, Jarvinen M, Vuori I.

Bone Research Group, UKK Institute, Tampere, Finland.

Recent animal studies have given evidence that vibration loading may be an efficient and safe way to improve mass and mechanical competence of bone, thus providing great potential for preventing and treating osteoporosis. Randomized controlled trials on the safety and efficacy of the vibration on human skeleton are, however, lacking. This randomized controlled intervention trial was designed to assess the effects of an 8-month whole body vibration intervention on bone, muscular performance, and body balance in young and healthy adults. Fifty-six volunteers (21 men and 35 women; age, 19-38 years) were randomly assigned to the vibration group or control group. The vibration intervention consisted of an 8-month whole body vibration (4 min/day, 3-5 times per week). During the 4-minute vibration program, the platform oscillated in an ascending order from 25 to 45 Hz, corresponding to estimated maximum vertical accelerations from 2 g to 8 g. Mass, structure, and estimated strength of bone at the distal tibia and tibial shaft were assessed by peripheral quantitative computed tomography (pQCT) at baseline and at 8 months. Bone mineral content was measured at the lumbar spine, femoral neck, trochanter, calcaneus, and distal radius using DXA at baseline and after the 8-month intervention. Serum markers of bone turnover were determined at baseline and 3, 6, and 8 months. Five performance tests (vertical jump, isometric extension strength of the lower extremities, grip strength, shuttle run, and postural sway) were performed at baseline and after the 8-month intervention. The 8-month vibration intervention succeeded well and was safe to perform but had no effect on mass, structure, or estimated strength of bone at any skeletal site. Serum markers of bone turnover did not change during the vibration intervention. However, at 8 months, a 7.8% net benefit in the vertical jump height was observed in the vibration group (95% CI, 2.8-13.1%; p = 0.003). On the other performance and balance tests, the vibration intervention had no effect. In conclusion, the studied whole body vibration program had no effect on bones of young, healthy adults, but instead, increased vertical jump height. Future human studies are needed before clinical recommendations for vibration exercise.

Torvinen S., Kannus P., Sievanen H., Jarvinen T.A., Pasanen T.A., Kontulainen S., Nenonen A., Jarvinen T.L. Paakkala T., Jarvinen M. & Vuori I. (2003). Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. Journal of Bone and Mineral Research. 18(5). 876-884.

Balance training and exercise in geriatric patients.

Runge M, Rehfeld G, Resnicek E.

Aerpah-Klinik Esslingen, Germany. [email protected]

Objective measures of gait and balance which meet the criteria of reliability and validity are required as a basis for exercise regimens. We established reference values of clinically relevant locomotor and balance performances for geriatric patients. We are using these data for evaluating the effects of different therapeutic approaches to locomotor and balance disorders. Reference values for chair rising. We administered a battery of five tests concerning neuromuscular function, locomotion and balance to a sample of 212 participants without apparent locomotor deficits (139 women, 73 men, mean age 70,5 years, SD 6,78 , median 70 years, range 60 to 90 years, recruited by public announcements). The test battery comprised the 'chair rising test' for measuring lower extremity neuromuscular function (five repetitions of rising from a chair as quickly as possible with arms crossed over the chest). The test has been proven reliable, valid, sensible and predictive for falls and future locomotor status and ADL-status. Chair rising [sec/5x], Range: 5.4-19.4, Mean: 9.1 (women:9.2, men:9.0), SD: 1.97, Median: 8.9. Training of balance and muscle power with Galileo 2000 - preliminary results. Galileo is a device for whole body vibration/oscillatory muscle stimulation. The subject stands with bended knees and hips on a rocking platform with a sagittal axle, which thrusts alternatively the right and left leg 7-14 mm upwards with a frequency of 27 Hz, thereby lengthening the extensor muscles of the lower extremities. The reflexive reaction of the neuromuscular system is a chain of rapid muscle contractions. We conducted a randomized controlled trial, n=34 (age: mean 67y, range 61-85, 11 female), cross-over design, intervention group 2 months training program three times a week (each session 3x2 minutes), performance tests of all participants every two weeks). The first 19 subjects have finished the intervention period. They reached mean performance gains in chair rising of 18%, strikingly different to the constant values of the controls. We interpret the findings as improvements in muscle power by the oscillative muscle stimulation.

Runge M., Rehfeld G. & Resnicek E. (2000). Balannce training and exercise in geriatric patients. Journal of Musculoskeletal and Neuronal Interactions. 1(1). 61-65.

Effects of whole body vibration on postural steadiness in an older population.

Rees SS, Murphy AJ, Watsford ML.

Human Performance Laboratory, School of Leisure, Sport and Tourism, University of Technology, Sydney, Australia.

The aim of this study was to investigate the effects of vibration exercise on postural steadiness performance in a healthy, older population. Forty-three healthy, older participants (23 men and 20 women, aged 73.5+/-4.5yr) were randomly assigned to either a vibration group (VIB), an exercise without vibration group (EX) or a control group (CONT). The VIB and EX groups undertook static and dynamic bodyweight exercises three times per week for eight weeks. Static balance was assessed using a one-legged postural steadiness (OLPS) test. This test was performed prior to and immediately after the training period. OLPS improved significantly for the VIB intervention after eight weeks training (p<0.05) compared to the EX and CONT groups. The improvements in OLPS were significantly affected by the baseline values, with the largest changes evident for VIB participants with a poorer initial score (p<0.01). Vibration exercise can contribute to improved static one-legged balance in a healthy, older population. As improvements in OLPS were related to baseline values, vibration exercise as an intervention would appear to serve the most benefit for those that exhibit diminished postural control.

Rees S.S., Murphy A.J. & Watsford M.L. (2008). Effects of whole body vibration on postural steadiness in an older population. Journal of Science and Medicine in Sport. [Epub ahead of print].

Effect of four-month vertical whole body vibration on performance and balance.

Torvinen S, Kannus P, Sievanen H, Jarvinen TA, Pasanen M, Kontulainen S, Jarvinen M, Oja P, Vuori I.

Bone Research Group, UKK Institute, Kaupinpuistonkatu 1, FIN-33500 Tampere, Finland. [email protected]

PURPOSE: This randomized controlled study was designed to investigate the effects of a 4-month whole body vibration-intervention on muscle performance and body balance in young, healthy, nonathletic adults. METHODS: Fifty-six volunteers (21 men and 35 women, aged 19-38 yr) were randomized to either the vibration group or control group. The vibration-intervention consisted of a 4-month whole body vibration training (4 min.d(-1), 3-5 times a week) employed by standing on a vertically vibrating platform. Five performance tests (vertical jump, isometric extension strength of the lower extremities, grip strength, shuttle run, and postural sway on a stability platform) were performed initially and at 2 and 4 months. RESULTS: Four-month vibration intervention induced an 8.5% (95% CI, 3.7-13.5%, P=0.001) net improvement in the jump height. Lower-limb extension strength increased after the 2-month vibration-intervention resulting in a 3.7% (95% CI, 0.3-7.2%, P=0.034) net benefit for the vibration. This benefit, however, diminished by the end of the 4-month intervention. In the grip strength, shuttle run, or balance tests, the vibration-intervention showed no effect. CONCLUSION: The 4-month whole body vibration-intervention enhanced jumping power in young adults, suggesting neuromuscular adaptation to the vibration stimulus. On the other hand, the vibration-intervention showed no effect on dynamic or static balance of the subjects. Future studies should focus on comparing the performance-enhancing effects of a whole body vibration to those of conventional resistance training and, as a broader objective, on investigating the possible effects of vibration on structure and strength of bones, and perhaps, incidence of falls of elderly people.

Torvinen S., Kannus P., Sievanen H., Jarvinen T.A., Pasanen M., Kontulainen S., Jarvinen M., Oja P. & Vuori I. (2002). Effect of four-month vertical whole body vibration on performance and balance. Medicine and Science in Sports and Exercise. 34(9). 1523-1528.

Effects of random whole-body vibration on postural control in Parkinson's disease

Turbanski S, Haas CT, Schmidtbleicher D, Friedrich A, Duisberg P.

Institute of Sport Sciences, Johann Wolfgang Goetge-University, Frankfurt/Main, Germany

Parkinson's Disease Hospital, Bad Nauheim, Germany

We investigated spontaneous effects of random whole-body vibration (rWBV) on postural control in Parkinsonian subjects. Effects were examined in biomechanical tests from a total of 52 patients divided equally into one experimental and one control group. Postural control was tested pre- and post-treatment in two standardized conditions (narrow standing and tandem standing). The intervention was based on rWBV (y: 3 mm, f: 6 Hz 1 Hz/sec) consisting of 5 series lasting 60 seconds each. The main findings from this study were that (1) rWBV can improve postural stability in Parkinson's disease (PD) spontaneously (2) these effects depend on the test condition. Based on the results of this study, rWBV can be regarded as an additional device in physical therapy in PD.

Turbanski S., Haas C.T., Schmidtbleicher D., Friedrich A. & Duisberg P. (2005). Effects of random whole-body vibration on postural control in parkinson's disease. Research in Sports Medicine. 13(3). 243-256.

Long-term effects of 6-week whole-body vibration on balance recovery and activities of daily living in the postacute phase of stroke: a randomized, controlled trial.

Van Nes IJ, Latour H, Schils F, Meijer R, van Kuijk A, Geurts AC.

Sint Maartenskliniek Research, Development & Education, P.O. Box 9011, 6500 GM, Nijmegen, The Netherlands. [email protected]

BACKGROUND AND PURPOSE: The long-term effects of 6-weeks whole-body vibration, as a novel method of somatosensory stimulation, on postural control and activities of daily living were compared with those of 6 weeks of exercise therapy on music of the same intensity in the postacute phase of stroke. METHODS: Fifty-three patients with moderate to severe functional disabilities were randomized within 6 weeks poststroke and within 3 days after admission to a rehabilitation center to either whole-body vibration or exercise therapy on music in addition to a regular inpatient rehabilitation program. The whole-body vibration group received 4x45-second stimulation on the Galileo 900 (30-Hz frontal plane oscillations of 3-mm amplitude) for 5 days per week during 6 weeks. The exercise therapy on music group received the same amount of exercise therapy on music. Outcome variables included the Berg Balance Scale, Trunk Control Test, Rivermead Mobility Index, Barthel Index, Functional Ambulation Categories, Motricity Index, and somatosensory threshold at 0, 6, and 12 weeks follow up. RESULTS: At baseline, both groups were comparable in terms of prognostic factors and outcome measures. Both at 6 and 12 weeks follow up, no clinically relevant or statistical differences in outcome were observed between the groups. No side effects were reported. CONCLUSIONS: Daily sessions of whole-body vibration during 6 weeks are not more effective in terms of recovery of balance and activities of daily living than the same amount of exercise therapy on music in the postacute phase of stroke.

Van Nes I.J., Latour H., Schils F., Meijer R., van Kujik A. & Geurts A.C. (2006). Long-term effects of 6 week whole body vibration on balance recovery and activities of daily living in the postacute phase of stroke: a randomized, controlled trial. Stroke. 37(9). 2331-2335.

Effect of whole-body vibration exercise and muscle strengthening, balance, and walking exercises on walking ability in the elderly.

Kawanabe K, Kawashima A, Sashimoto I, Takeda T, Sato Y, Iwamoto J.

Kawashima Orthopaedic Clinic, Chiba, Japan.

The present study was conducted to determine the beneficial effect of whole-body vibration (WBV) exercise in addition to muscle strengthening, balance, and walking exercises on the walking ability in the elderly. Sixty-seven elderly participants were divided into two groups; the WBV exercise plus routine exercises group (n=40) and the routine exercises alone group (n=27). WBV exercise was performed on a Galileo machine (Novotec, Pforzheim, Germany) at an intensity of 12-20 Hz, for a duration of 4 minutes, once every week. All the participants in both the groups were similarly instructed to undergo routine exercises such as balance and muscle strengthening training, and take walking exercise twice a week. The period of this study was 2 months to evaluate the acute effects of WBV exercise. The mean age of the participants was 72.0 years (range, 59-86 years). At baseline, there were significant negative correlations between age and the walking speed, step length, and maximum standing time on one leg. After the 2-month exercise program, the walking speed, step length, and the maximum standing time on one leg were significantly improved in the WBV exercise plus routine exercises group, while no significant changes in these parameters were observed in the routine exercises alone group. Thus, the present study showed the beneficial effect of WBV exercise in addition to muscle strengthening, balance, and walking exercises in improving the walking ability in the elderly. WBV exercise was safe and well tolerated in the elderly.

Kawanabe K., Kawashima A., Sashimoto I., Takeda T., Sato Y. & Iwamoto J. (2007). Effect of whole-body vibration exercise and muscle strengthening, balance, and walking exercises on walking ability in the elderly. The Keio Journal of Medicine. 56(1). 28-33.

.

CONTACT US TODAY

We look forward to hearing from you

Location

Find us on the map

Office Hours

Monday:

8:00 am-6:00 pm

Tuesday:

8:00 am-5:00 pm

Wednesday:

8:00 am-6:00 pm

Thursday:

8:00 am-6:00 pm

Friday:

8:00 am-6:00 pm

Saturday:

Closed

Sunday:

Closed

Office Hours

Our Regular Schedule

Monday:

8:00 am-6:00 pm

Tuesday:

8:00 am-5:00 pm

Wednesday:

8:00 am-6:00 pm

Thursday:

8:00 am-6:00 pm

Friday:

8:00 am-6:00 pm

Saturday:

Closed

Sunday:

Closed